Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

One Task Vector is not Enough: A Large-Scale Study for In-Context Learning (2505.23911v1)

Published 29 May 2025 in cs.CL

Abstract: In-context learning (ICL) enables LLMs to adapt to new tasks using few examples, with task vectors - specific hidden state activations - hypothesized to encode task information. Existing studies are limited by small-scale benchmarks, restricting comprehensive analysis. We introduce QuiteAFew, a novel dataset of 3,096 diverse few-shot tasks, each with 30 input-output pairs derived from the Alpaca dataset. Experiments with Llama-3-8B on QuiteAFew reveal: (1) task vector performance peaks at an intermediate layer (e.g., 15th), (2) effectiveness varies significantly by task type, and (3) complex tasks rely on multiple, subtask-specific vectors rather than a single vector, suggesting distributed task knowledge representation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube