Papers
Topics
Authors
Recent
2000 character limit reached

CNN-LSTM Hybrid Model for AI-Driven Prediction of COVID-19 Severity from Spike Sequences and Clinical Data (2505.23879v1)

Published 29 May 2025 in cs.LG and cs.AI

Abstract: The COVID-19 pandemic, caused by SARS-CoV-2, highlighted the critical need for accurate prediction of disease severity to optimize healthcare resource allocation and patient management. The spike protein, which facilitates viral entry into host cells, exhibits high mutation rates, particularly in the receptor-binding domain, influencing viral pathogenicity. Artificial intelligence approaches, such as deep learning, offer promising solutions for leveraging genomic and clinical data to predict disease outcomes. Objective: This study aimed to develop a hybrid CNN-LSTM deep learning model to predict COVID-19 severity using spike protein sequences and associated clinical metadata from South American patients. Methods: We retrieved 9,570 spike protein sequences from the GISAID database, of which 3,467 met inclusion criteria after standardization. The dataset included 2,313 severe and 1,154 mild cases. A feature engineering pipeline extracted features from sequences, while demographic and clinical variables were one-hot encoded. A hybrid CNN-LSTM architecture was trained, combining CNN layers for local pattern extraction and an LSTM layer for long-term dependency modeling. Results: The model achieved an F1 score of 82.92%, ROC-AUC of 0.9084, precision of 83.56%, and recall of 82.85%, demonstrating robust classification performance. Training stabilized at 85% accuracy with minimal overfitting. The most prevalent lineages (P.1, AY.99.2) and clades (GR, GK) aligned with regional epidemiological trends, suggesting potential associations between viral genetics and clinical outcomes. Conclusion: The CNN-LSTM hybrid model effectively predicted COVID-19 severity using spike protein sequences and clinical data, highlighting the utility of AI in genomic surveillance and precision public health. Despite limitations, this approach provides a framework for early severity prediction in future outbreaks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.