Papers
Topics
Authors
Recent
2000 character limit reached

Position Paper: Metadata Enrichment Model: Integrating Neural Networks and Semantic Knowledge Graphs for Cultural Heritage Applications (2505.23543v1)

Published 29 May 2025 in cs.CV

Abstract: The digitization of cultural heritage collections has opened new directions for research, yet the lack of enriched metadata poses a substantial challenge to accessibility, interoperability, and cross-institutional collaboration. In several past years neural networks models such as YOLOv11 and Detectron2 have revolutionized visual data analysis, but their application to domain-specific cultural artifacts - such as manuscripts and incunabula - remains limited by the absence of methodologies that address structural feature extraction and semantic interoperability. In this position paper, we argue, that the integration of neural networks with semantic technologies represents a paradigm shift in cultural heritage digitization processes. We present the Metadata Enrichment Model (MEM), a conceptual framework designed to enrich metadata for digitized collections by combining fine-tuned computer vision models, LLMs and structured knowledge graphs. The Multilayer Vision Mechanism (MVM) appears as the key innovation of MEM. This iterative process improves visual analysis by dynamically detecting nested features, such as text within seals or images within stamps. To expose MEM's potential, we apply it to a dataset of digitized incunabula from the Jagiellonian Digital Library and release a manually annotated dataset of 105 manuscript pages. We examine the practical challenges of MEM's usage in real-world GLAM institutions, including the need for domain-specific fine-tuning, the adjustment of enriched metadata with Linked Data standards and computational costs. We present MEM as a flexible and extensible methodology. This paper contributes to the discussion on how artificial intelligence and semantic web technologies can advance cultural heritage research, and also use these technologies in practice.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.