Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Certified algorithms for numerical semigroups in Rocq (2505.23205v1)

Published 29 May 2025 in cs.DM

Abstract: A numerical semigroup is a co-finite submonoid of the monoid of non-negative integers under addition. Many properties of numerical semigroups rely on some fundamental invariants, such as, among others, the set of gaps (and its cardinality), the Ap\'ery set or the Frobenius number. Algorithms for calculating invariants are currently based on computational tools, such as GAP, which lack proofs (either formal or informal) of their correctness. In this paper we introduce a Rocq formalization of numerical semigroups. Given the semigroup generators, we provide certified algorithms for computing some of the fundamental invariants: the set of gaps, of small elements, the Ap\'ery set, the multiplicity, the conductor and the Frobenius number. To the best of our knowledge this is the first formalization of numerical semigroups in any proof assistant.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.