Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Symplectic Generative Networks (SGNs): A Hamiltonian Framework for Invertible Deep Generative Modeling (2505.22527v1)

Published 28 May 2025 in stat.ML and cs.LG

Abstract: We introduce the Symplectic Generative Network (SGN), a deep generative model that leverages Hamiltonian mechanics to construct an invertible, volume-preserving mapping between a latent space and the data space. By endowing the latent space with a symplectic structure and modeling data generation as the time evolution of a Hamiltonian system, SGN achieves exact likelihood evaluation without incurring the computational overhead of Jacobian determinant calculations. In this work, we provide a rigorous mathematical foundation for SGNs through a comprehensive theoretical framework that includes: (i) complete proofs of invertibility and volume preservation, (ii) a formal complexity analysis with theoretical comparisons to Variational Autoencoders and Normalizing Flows, (iii) strengthened universal approximation results with quantitative error bounds, (iv) an information-theoretic analysis based on the geometry of statistical manifolds, and (v) an extensive stability analysis with adaptive integration guarantees. These contributions highlight the fundamental advantages of SGNs and establish a solid foundation for future empirical investigations and applications to complex, high-dimensional data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.