Large Language Models for Solving Economic Dispatch Problem (2505.21931v1)
Abstract: This paper investigates the capability of off-the-shelf LLMs to solve the economic dispatch (ED) problem. ED is a hard-constrained optimization problem solved on a day-ahead timescale by grid operators to minimize electricity generation costs while accounting for physical and engineering constraints. Numerous approaches have been proposed, but these typically require either mathematical formulations, face convergence issues, or depend on extensive labeled data and training time. This work implements LLMs enhanced with reasoning capabilities to address the classic lossless ED problem. The proposed approach avoids the need for explicit mathematical formulations, does not suffer from convergence challenges, and requires neither labeled data nor extensive training. A few-shot learning technique is utilized in two different prompting contexts. The IEEE 118-bus system with 19 generation units serves as the evaluation benchmark. Results demonstrate that various prompting strategies enable LLMs to effectively solve the ED problem, offering a convenient and efficient alternative. Consequently, this approach presents a promising future solution for ED tasks, particularly when foundational power system models are available.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.