Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

An Uncertainty-Aware ED-LSTM for Probabilistic Suffix Prediction (2505.21339v2)

Published 27 May 2025 in cs.LG and cs.AI

Abstract: Suffix prediction of business processes forecasts the remaining sequence of events until process completion. Current approaches focus on predicting the most likely suffix, representing a single scenario. However, when the future course of a process is subject to uncertainty and high variability, the expressiveness of such a single scenario can be limited, since other possible scenarios, which together may have a higher overall probability, are overlooked. To address this limitation, we propose probabilistic suffix prediction, a novel approach that approximates a probability distribution of suffixes. The proposed approach is based on an Uncertainty-Aware Encoder-Decoder LSTM (U-ED-LSTM) and a Monte Carlo (MC) suffix sampling algorithm. We capture epistemic uncertainties via MC dropout and aleatoric uncertainties as learned loss attenuation. This technical report presents a comprehensive evaluation of the probabilistic suffix prediction approach's predictive performance and calibration under three different hyperparameter settings, using four real-life and one artificial event log. The results show that: i) probabilistic suffix prediction can outperform most likely suffix prediction, the U-ED-LSTM has reasonable predictive performance, and ii) the model's predictions are well calibrated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube