Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing the Accuracy of Predictors of Activity Sequences of Business Processes (2312.05560v1)

Published 9 Dec 2023 in cs.LG

Abstract: Predictive process monitoring is an evolving research field that studies how to train and use predictive models for operational decision-making. One of the problems studied in this field is that of predicting the sequence of upcoming activities in a case up to its completion, a.k.a. the case suffix. The prediction of case suffixes provides input to estimate short-term workloads and execution times under different resource schedules. Existing methods to address this problem often generate suffixes wherein some activities are repeated many times, whereas this pattern is not observed in the data. Closer examination shows that this shortcoming stems from the approach used to sample the successive activity instances to generate a case suffix. Accordingly, the paper introduces a sampling approach aimed at reducing repetitions of activities in the predicted case suffixes. The approach, namely Daemon action, strikes a balance between exploration and exploitation when generating the successive activity instances. We enhance a deep learning approach for case suffix predictions using this sampling approach, and experimentally show that the enhanced approach outperforms the unenhanced ones with respect to control-flow accuracy measures.

Summary

We haven't generated a summary for this paper yet.