Papers
Topics
Authors
Recent
Search
2000 character limit reached

Developing hybrid mechanistic and data-driven personalized prediction models for platelet dynamics

Published 27 May 2025 in cs.LG and q-bio.QM | (2505.21204v1)

Abstract: Hematotoxicity, drug-induced damage to the blood-forming system, is a frequent side effect of cytotoxic chemotherapy and poses a significant challenge in clinical practice due to its high inter-patient variability and limited predictability. Current mechanistic models often struggle to accurately forecast outcomes for patients with irregular or atypical trajectories. In this study, we develop and compare hybrid mechanistic and data-driven approaches for individualized time series modeling of platelet counts during chemotherapy. We consider hybrid models that combine mechanistic models with neural networks, known as universal differential equations. As a purely data-driven alternative, we utilize a nonlinear autoregressive exogenous model using gated recurrent units as the underlying architecture. These models are evaluated across a range of real patient scenarios, varying in data availability and sparsity, to assess predictive performance. Our findings demonstrate that data-driven methods, when provided with sufficient data, significantly improve prediction accuracy, particularly for high-risk patients with irregular platelet dynamics. This highlights the potential of data-driven approaches in enhancing clinical decision-making. In contrast, hybrid and mechanistic models are superior in scenarios with limited or sparse data. The proposed modeling and comparison framework is generalizable and could be extended to predict other treatment-related toxicities, offering broad applicability in personalized medicine.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.