Papers
Topics
Authors
Recent
2000 character limit reached

LEGO-Compiler: Enhancing Neural Compilation Through Translation Composability

Published 26 May 2025 in cs.PL, cs.AI, and cs.SE | (2505.20356v1)

Abstract: LLMs have the potential to revolutionize how we design and implement compilers and code translation tools. However, existing LLMs struggle to handle long and complex programs. We introduce LEGO-Compiler, a novel neural compilation system that leverages LLMs to translate high-level languages into assembly code. Our approach centers on three key innovations: LEGO translation, which decomposes the input program into manageable blocks; breaking down the complex compilation process into smaller, simpler verifiable steps by organizing it as a verifiable LLM workflow by external tests; and a feedback mechanism for self-correction. Supported by formal proofs of translation composability, LEGO-Compiler demonstrates high accuracy on multiple datasets, including over 99% on ExeBench and 97.9% on industrial-grade AnsiBench. Additionally, LEGO-Compiler has also acheived near one order-of-magnitude improvement on compilable code size scalability. This work opens new avenues for applying LLMs to system-level tasks, complementing traditional compiler technologies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.