Decomposing Complex Visual Comprehension into Atomic Visual Skills for Vision Language Models (2505.20021v1)
Abstract: Recent Vision-LLMs (VLMs) have demonstrated impressive multimodal comprehension and reasoning capabilities, yet they often struggle with trivially simple visual tasks. In this work, we focus on the domain of basic 2D Euclidean geometry and systematically categorize the fundamental, indivisible visual perception skills, which we refer to as atomic visual skills. We then introduce the Atomic Visual Skills Dataset (AVSD) for evaluating VLMs on the atomic visual skills. Using AVSD, we benchmark state-of-the-art VLMs and find that they struggle with these tasks, despite being trivial for adult humans. Our findings highlight the need for purpose-built datasets to train and evaluate VLMs on atomic, rather than composite, visual perception tasks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.