Papers
Topics
Authors
Recent
2000 character limit reached

MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering (2505.19455v1)

Published 26 May 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.