It's Not Just Labeling -- A Research on LLM Generated Feedback Interpretability and Image Labeling Sketch Features (2505.19419v2)
Abstract: The quality of training data is critical to the performance of machine learning applications in domains like transportation, healthcare, and robotics. Accurate image labeling, however, often relies on time-consuming, expert-driven methods with limited feedback. This research introduces a sketch-based annotation approach supported by LLMs to reduce technical barriers and enhance accessibility. Using a synthetic dataset, we examine how sketch recognition features relate to LLM feedback metrics, aiming to improve the reliability and interpretability of LLM-assisted labeling. We also explore how prompting strategies and sketch variations influence feedback quality. Our main contribution is a sketch-based virtual assistant that simplifies annotation for non-experts and advances LLM-driven labeling tools in terms of scalability, accessibility, and explainability.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.