Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Investigating Pedagogical Teacher and Student LLM Agents: Genetic Adaptation Meets Retrieval Augmented Generation Across Learning Style (2505.19173v1)

Published 25 May 2025 in cs.AI

Abstract: Effective teaching requires adapting instructional strategies to accommodate the diverse cognitive and behavioral profiles of students, a persistent challenge in education and teacher training. While LLMs offer promise as tools to simulate such complex pedagogical environments, current simulation frameworks are limited in two key respects: (1) they often reduce students to static knowledge profiles, and (2) they lack adaptive mechanisms for modeling teachers who evolve their strategies in response to student feedback. To address these gaps, \textbf{we introduce a novel simulation framework that integrates LLM-based heterogeneous student agents with a self-optimizing teacher agent}. The teacher agent's pedagogical policy is dynamically evolved using a genetic algorithm, allowing it to discover and refine effective teaching strategies based on the aggregate performance of diverse learners. In addition, \textbf{we propose Persona-RAG}, a Retrieval Augmented Generation module that enables student agents to retrieve knowledge tailored to their individual learning styles. Persona-RAG preserves the retrieval accuracy of standard RAG baselines while enhancing personalization, an essential factor in modeling realistic educational scenarios. Through extensive experiments, we demonstrate how our framework supports the emergence of distinct and interpretable teaching patterns when interacting with varied student populations. Our results highlight the potential of LLM-driven simulations to inform adaptive teaching practices and provide a testbed for training human educators in controlled, data-driven environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.