Papers
Topics
Authors
Recent
Search
2000 character limit reached

Remote Sensing Image Classification with Decoupled Knowledge Distillation

Published 25 May 2025 in cs.CV | (2505.19111v2)

Abstract: To address the challenges posed by the large number of parameters in existing remote sensing image classification models, which hinder deployment on resource-constrained devices, this paper proposes a lightweight classification method based on knowledge distillation. Specifically, G-GhostNet is adopted as the backbone network, leveraging feature reuse to reduce redundant parameters and significantly improve inference efficiency. In addition, a decoupled knowledge distillation strategy is employed, which separates target and non-target classes to effectively enhance classification accuracy. Experimental results on the RSOD and AID datasets demonstrate that, compared with the high-parameter VGG-16 model, the proposed method achieves nearly equivalent Top-1 accuracy while reducing the number of parameters by 6.24 times. This approach strikes an excellent balance between model size and classification performance, offering an efficient solution for deployment on resource-limited devices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.