Papers
Topics
Authors
Recent
2000 character limit reached

Marginal Fairness: Fair Decision-Making under Risk Measures (2505.18895v1)

Published 24 May 2025 in stat.ML, cs.CC, cs.CY, cs.LG, and q-fin.RM

Abstract: This paper introduces marginal fairness, a new individual fairness notion for equitable decision-making in the presence of protected attributes such as gender, race, and religion. This criterion ensures that decisions based on generalized distortion risk measures are insensitive to distributional perturbations in protected attributes, regardless of whether these attributes are continuous, discrete, categorical, univariate, or multivariate. To operationalize this notion and reflect real-world regulatory environments (such as the EU gender-neutral pricing regulation), we model business decision-making in highly regulated industries (such as insurance and finance) as a two-step process: (i) a predictive modeling stage, in which a prediction function for the target variable (e.g., insurance losses) is estimated based on both protected and non-protected covariates; and (ii) a decision-making stage, in which a generalized distortion risk measure is applied to the target variable, conditional only on non-protected covariates, to determine the decision. In this second step, we modify the risk measure such that the decision becomes insensitive to the protected attribute, thus enforcing fairness to ensure equitable outcomes under risk-sensitive, regulatory constraints. Furthermore, by utilizing the concept of cascade sensitivity, we extend the marginal fairness framework to capture how dependencies between covariates propagate the influence of protected attributes through the modeling pipeline. A numerical study and an empirical implementation using an auto insurance dataset demonstrate how the framework can be applied in practice.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 15 likes about this paper.