Papers
Topics
Authors
Recent
2000 character limit reached

Discrete gradient methods for port-Hamiltonian differential-algebraic equations (2505.18810v1)

Published 24 May 2025 in math.NA, cs.CE, cs.NA, cs.RO, cs.SY, eess.SY, and math.DS

Abstract: Discrete gradient methods are a powerful tool for the time discretization of dynamical systems, since they are structure-preserving regardless of the form of the total energy. In this work, we discuss the application of discrete gradient methods to the system class of nonlinear port-Hamiltonian differential-algebraic equations - as they emerge from the port- and energy-based modeling of physical systems in various domains. We introduce a novel numerical scheme tailored for semi-explicit differential-algebraic equations and further address more general settings using the concepts of discrete gradient pairs and Dirac-dissipative structures. Additionally, the behavior under system transformations is investigated and we demonstrate that under suitable assumptions port-Hamiltonian differential-algebraic equations admit a representation which consists of a parametrized port-Hamiltonian semi-explicit system and an unstructured equation. Finally, we present the application to multibody system dynamics and discuss numerical results to demonstrate the capabilities of our approach.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.