Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Autocomp: LLM-Driven Code Optimization for Tensor Accelerators (2505.18574v2)

Published 24 May 2025 in cs.PL, cs.AI, cs.AR, and cs.LG

Abstract: Hardware accelerators, especially those designed for tensor processing, have become ubiquitous in today's computing landscape. However, even with significant efforts in building compilers, programming these tensor accelerators remains challenging, leaving much of their potential underutilized. Recently, LLMs, trained on large amounts of code, have shown significant promise in code generation and optimization tasks, but generating low-resource languages like specialized tensor accelerator code still poses a significant challenge. We tackle this challenge with Autocomp, an approach that empowers accelerator programmers to leverage domain knowledge and hardware feedback to optimize code via an automated LLM-driven search. We accomplish this by: 1) formulating each optimization pass as a structured two-phase prompt, divided into planning and code generation phases, 2) inserting domain knowledge during planning via a concise and adaptable optimization menu, and 3) integrating correctness and performance metrics from hardware as feedback at each search iteration. Across three categories of representative workloads and two different accelerators, we demonstrate that Autocomp-optimized code runs 5.6x (GEMM) and 2.7x (convolution) faster than the vendor-provided library, and outperforms expert-level hand-tuned code by 1.4x (GEMM), 1.1x (convolution), and 1.3x (fine-grained linear algebra). Additionally, we demonstrate that optimization schedules generated from Autocomp can be reused across similar tensor operations, improving speedups by up to 24% under a fixed sample budget.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com