Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TRACE for Tracking the Emergence of Semantic Representations in Transformers (2505.17998v1)

Published 23 May 2025 in cs.CL

Abstract: Modern transformer models exhibit phase transitions during training, distinct shifts from memorisation to abstraction, but the mechanisms underlying these transitions remain poorly understood. Prior work has often focused on endpoint representations or isolated signals like curvature or mutual information, typically in symbolic or arithmetic domains, overlooking the emergence of linguistic structure. We introduce TRACE (Tracking Representation Abstraction and Compositional Emergence), a diagnostic framework combining geometric, informational, and linguistic signals to detect phase transitions in Transformer-based LMs. TRACE leverages a frame-semantic data generation method, ABSynth, that produces annotated synthetic corpora with controllable complexity, lexical distributions, and structural entropy, while being fully annotated with linguistic categories, enabling precise analysis of abstraction emergence. Experiments reveal that (i) phase transitions align with clear intersections between curvature collapse and dimension stabilisation; (ii) these geometric shifts coincide with emerging syntactic and semantic accuracy; (iii) abstraction patterns persist across architectural variants, with components like feedforward networks affecting optimisation stability rather than fundamentally altering trajectories. This work advances our understanding of how linguistic abstractions emerge in LMs, offering insights into model interpretability, training efficiency, and compositional generalisation that could inform more principled approaches to LM development.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube