Papers
Topics
Authors
Recent
2000 character limit reached

\texttt{Range-Arithmetic}: Verifiable Deep Learning Inference on an Untrusted Party (2505.17623v1)

Published 23 May 2025 in cs.CR, cs.AI, cs.ET, cs.LG, and cs.PF

Abstract: Verifiable computing (VC) has gained prominence in decentralized machine learning systems, where resource-intensive tasks like deep neural network (DNN) inference are offloaded to external participants due to blockchain limitations. This creates a need to verify the correctness of outsourced computations without re-execution. We propose \texttt{Range-Arithmetic}, a novel framework for efficient and verifiable DNN inference that transforms non-arithmetic operations, such as rounding after fixed-point matrix multiplication and ReLU, into arithmetic steps verifiable using sum-check protocols and concatenated range proofs. Our approach avoids the complexity of Boolean encoding, high-degree polynomials, and large lookup tables while remaining compatible with finite-field-based proof systems. Experimental results show that our method not only matches the performance of existing approaches, but also reduces the computational cost of verifying the results, the computational effort required from the untrusted party performing the DNN inference, and the communication overhead between the two sides.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.