Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Corporate Needs You to Find the Difference: Revisiting Submodular and Supermodular Ratio Optimization Problems (2505.17443v1)

Published 23 May 2025 in cs.DS and cs.LG

Abstract: We study the problem of minimizing or maximizing the average value $ f(S)/|S| $ of a submodular or supermodular set function $ f: 2V \to \mathbb{R} $ over non-empty subsets $ S \subseteq V $. This generalizes classical problems such as Densest Subgraph (DSG), Densest Supermodular Set (DSS), and Submodular Function Minimization (SFM). Motivated by recent applications, we introduce two broad formulations: Unrestricted Sparsest Submodular Set (USSS) and Unrestricted Densest Supermodular Set (UDSS), which allow for negative and non-monotone functions. We show that DSS, SFM, USSS, UDSS, and the Minimum Norm Point (MNP) problem are equivalent under strongly polynomial-time reductions, enabling algorithmic crossover. In particular, viewing these through the lens of the MNP in the base polyhedron, we connect Fujishige's theory with dense decomposition, and show that both Fujishige-Wolfe's algorithm and the heuristic \textsc{SuperGreedy++} act as universal solvers for all these problems, including sub-modular function minimization. Theoretically, we explain why \textsc{SuperGreedy++} is effective beyond DSS, including for tasks like submodular minimization and minimum $ s $-$ t $ cut. Empirically, we test several solvers, including the Fujishige-Wolfe algorithm on over 400 experiments across seven problem types and large-scale real/synthetic datasets. Surprisingly, general-purpose convex and flow-based methods outperform task-specific baselines, demonstrating that with the right framing, general optimization techniques can be both scalable and state-of-the-art for submodular and supermodular ratio problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: