A Survey of Safe Reinforcement Learning and Constrained MDPs: A Technical Survey on Single-Agent and Multi-Agent Safety (2505.17342v1)
Abstract: Safe Reinforcement Learning (SafeRL) is the subfield of reinforcement learning that explicitly deals with safety constraints during the learning and deployment of agents. This survey provides a mathematically rigorous overview of SafeRL formulations based on Constrained Markov Decision Processes (CMDPs) and extensions to Multi-Agent Safe RL (SafeMARL). We review theoretical foundations of CMDPs, covering definitions, constrained optimization techniques, and fundamental theorems. We then summarize state-of-the-art algorithms in SafeRL for single agents, including policy gradient methods with safety guarantees and safe exploration strategies, as well as recent advances in SafeMARL for cooperative and competitive settings. Additionally, we propose five open research problems to advance the field, with three focusing on SafeMARL. Each problem is described with motivation, key challenges, and related prior work. This survey is intended as a technical guide for researchers interested in SafeRL and SafeMARL, highlighting key concepts, methods, and open future research directions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.