VoxRAG: A Step Toward Transcription-Free RAG Systems in Spoken Question Answering (2505.17326v1)
Abstract: We introduce VoxRAG, a modular speech-to-speech retrieval-augmented generation system that bypasses transcription to retrieve semantically relevant audio segments directly from spoken queries. VoxRAG employs silence-aware segmentation, speaker diarization, CLAP audio embeddings, and FAISS retrieval using L2-normalized cosine similarity. We construct a 50-query test set recorded as spoken input by a native English speaker. Retrieval quality was evaluated using LLM-as-a-judge annotations. For very relevant segments, cosine similarity achieved a Recall@10 of 0.34. For somewhat relevant segments, Recall@10 rose to 0.60 and nDCG@10 to 0.27, highlighting strong topical alignment. Answer quality was judged on a 0--2 scale across relevance, accuracy, completeness, and precision, with mean scores of 0.84, 0.58, 0.56, and 0.46 respectively. While precision and retrieval quality remain key limitations, VoxRAG shows that transcription-free speech-to-speech retrieval is feasible in RAG systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.