Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Next Token Perception Score: Analytical Assessment of your LLM Perception Skills (2505.17169v1)

Published 22 May 2025 in cs.CL and cs.AI

Abstract: Autoregressive pretraining has become the de facto paradigm for learning general-purpose representations in LLMs. However, linear probe performance across downstream perception tasks shows substantial variability, suggesting that features optimized for next-token prediction do not consistently transfer well to downstream perception tasks. We demonstrate that representations learned via autoregression capture features that may lie outside the subspaces most informative for perception. To quantify the (mis)alignment between autoregressive pretraining and downstream perception, we introduce the Next Token Perception Score (NTPS)-a score derived under a linear setting that measures the overlap between autoregressive and perception feature subspaces. This metric can be easily computed in closed form from pretrained representations and labeled data, and is proven to both upper- and lower-bound the excess loss. Empirically, we show that NTPS correlates strongly with linear probe accuracy across 12 diverse NLP datasets and eight pretrained models ranging from 270M to 8B parameters, confirming its utility as a measure of alignment. Furthermore, we show that NTPS increases following low-rank adaptation (LoRA) fine-tuning, especially in large models, suggesting that LoRA aligning representations to perception tasks enhances subspace overlap and thus improves downstream performance. More importantly, we find that NTPS reliably predicts the additional accuracy gains attained by LoRA finetuning thereby providing a lightweight prescreening tool for LoRA adaptation. Our results offer both theoretical insights and practical tools for analytically assessing LLM perception skills.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.