Papers
Topics
Authors
Recent
2000 character limit reached

Data Doping or True Intelligence? Evaluating the Transferability of Injected Knowledge in LLMs (2505.17140v1)

Published 22 May 2025 in cs.CL, cs.AI, and cs.LG

Abstract: As the knowledge of LLMs becomes outdated over time, there is a growing need for efficient methods to update them, especially when injecting proprietary information. Our study reveals that comprehension-intensive fine-tuning tasks (e.g., question answering and blanks) achieve substantially higher knowledge retention rates (48%) compared to mapping-oriented tasks like translation (17%) or text-to-JSON conversion (20%), despite exposure to identical factual content. We demonstrate that this pattern persists across model architectures and follows scaling laws, with larger models showing improved retention across all task types. However, all models exhibit significant performance drops when applying injected knowledge in broader contexts, suggesting limited semantic integration. These findings show the importance of task selection in updating LLM knowledge, showing that effective knowledge injection relies not just on data exposure but on the depth of cognitive engagement during fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.