Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Generalizing Large Language Model Usability Across Resource-Constrained (2505.17040v1)

Published 13 May 2025 in cs.LG and cs.CL

Abstract: LLMs have achieved remarkable success across a wide range of natural language tasks, and recent efforts have sought to extend their capabilities to multimodal domains and resource-constrained environments. However, existing approaches often rely on costly supervised fine-tuning or assume fixed training conditions, limiting their generalization when facing unseen modalities, limited data, or restricted compute resources. This dissertation presents a systematic study toward generalizing LLM usability under real-world constraints. First, it introduces a robust text-centric alignment framework that enables LLMs to seamlessly integrate diverse modalities-including text, images, tables, and any modalities - via natural language interfaces. This approach supports in-context adaptation to unseen or dynamically changing modalities without requiring retraining. To enhance robustness against noisy and missing modalities, an adversarial prompting technique is proposed, generating semantically challenging perturbations at the prompt level to stress-test model reliability. Beyond multimodal setting, the dissertation investigates inference-time optimization strategies for LLMs, leveraging prompt search and uncertainty quantification to improve performance without additional model training. This perspective offers an efficient alternative to scaling model parameters or retraining from scratch. Additionally, the work addresses low-resource domains such as Verilog code generation by designing correct-by-construction synthetic data pipelines and logic-enhanced reasoning models, achieving state-of-the-art performance with minimal data. Together, these contributions form a unified effort to enhance the adaptability, scalability, and efficiency of LLMs under practical constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube