Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Does Synthetic Data Help Named Entity Recognition for Low-Resource Languages? (2505.16814v2)

Published 22 May 2025 in cs.CL

Abstract: Named Entity Recognition(NER) for low-resource languages aims to produce robust systems for languages where there is limited labeled training data available, and has been an area of increasing interest within NLP. Data augmentation for increasing the amount of low-resource labeled data is a common practice. In this paper, we explore the role of synthetic data in the context of multilingual, low-resource NER, considering 11 languages from diverse language families. Our results suggest that synthetic data does in fact hold promise for low-resource language NER, though we see significant variation between languages.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube