Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods (2505.16516v1)

Published 22 May 2025 in cs.LG and cs.AI

Abstract: Kernel methods are widely used in machine learning due to their flexibility and expressive power. However, their black-box nature poses significant challenges to interpretability, limiting their adoption in high-stakes applications. Shapley value-based feature attribution techniques, such as SHAP and kernel-specific variants like RKHS-SHAP, offer a promising path toward explainability. Yet, computing exact Shapley values remains computationally intractable in general, motivating the development of various approximation schemes. In this work, we introduce PKeX-Shapley, a novel algorithm that utilizes the multiplicative structure of product kernels to enable the exact computation of Shapley values in polynomial time. We show that product-kernel models admit a functional decomposition that allows for a recursive formulation of Shapley values. This decomposition not only yields computational efficiency but also enhances interpretability in kernel-based learning. We also demonstrate how our framework can be generalized to explain kernel-based statistical discrepancies such as the Maximum Mean Discrepancy (MMD) and the Hilbert-Schmidt Independence Criterion (HSIC), thus offering new tools for interpretable statistical inference.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.