Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AnchorFormer: Differentiable Anchor Attention for Efficient Vision Transformer (2505.16463v3)

Published 22 May 2025 in cs.CV and cs.LG

Abstract: Recently, vision transformers (ViTs) have achieved excellent performance on vision tasks by measuring the global self-attention among the image patches. Given $n$ patches, they will have quadratic complexity such as $\mathcal{O}(n2)$ and the time cost is high when splitting the input image with a small granularity. Meanwhile, the pivotal information is often randomly gathered in a few regions of an input image, some tokens may not be helpful for the downstream tasks. To handle this problem, we introduce an anchor-based efficient vision transformer (AnchorFormer), which employs the anchor tokens to learn the pivotal information and accelerate the inference. Firstly, by estimating the bipartite attention between the anchors and tokens, the complexity will be reduced from $\mathcal{O}(n2)$ to $\mathcal{O}(mn)$, where $m$ is an anchor number and $m < n$. Notably, by representing the anchors with the neurons in a neural layer, we can differentiably learn these anchors and approximate global self-attention through the Markov process. It avoids the burden caused by non-differentiable operations and further speeds up the approximate attention. Moreover, we extend the proposed model to three downstream tasks including classification, detection, and segmentation. Extensive experiments show the effectiveness of our AnchorFormer, e.g., achieving up to a 9.0% higher accuracy or 46.7% FLOPs reduction on ImageNet classification, 81.3% higher mAP on COCO detection under comparable FLOPs, as compared to the current baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.