Papers
Topics
Authors
Recent
2000 character limit reached

SuperPure: Efficient Purification of Localized and Distributed Adversarial Patches via Super-Resolution GAN Models (2505.16318v1)

Published 22 May 2025 in cs.CV, cs.CR, and eess.IV

Abstract: As vision-based machine learning models are increasingly integrated into autonomous and cyber-physical systems, concerns about (physical) adversarial patch attacks are growing. While state-of-the-art defenses can achieve certified robustness with minimal impact on utility against highly-concentrated localized patch attacks, they fall short in two important areas: (i) State-of-the-art methods are vulnerable to low-noise distributed patches where perturbations are subtly dispersed to evade detection or masking, as shown recently by the DorPatch attack; (ii) Achieving high robustness with state-of-the-art methods is extremely time and resource-consuming, rendering them impractical for latency-sensitive applications in many cyber-physical systems. To address both robustness and latency issues, this paper proposes a new defense strategy for adversarial patch attacks called SuperPure. The key novelty is developing a pixel-wise masking scheme that is robust against both distributed and localized patches. The masking involves leveraging a GAN-based super-resolution scheme to gradually purify the image from adversarial patches. Our extensive evaluations using ImageNet and two standard classifiers, ResNet and EfficientNet, show that SuperPure advances the state-of-the-art in three major directions: (i) it improves the robustness against conventional localized patches by more than 20%, on average, while also improving top-1 clean accuracy by almost 10%; (ii) It achieves 58% robustness against distributed patch attacks (as opposed to 0% in state-of-the-art method, PatchCleanser); (iii) It decreases the defense end-to-end latency by over 98% compared to PatchCleanser. Our further analysis shows that SuperPure is robust against white-box attacks and different patch sizes. Our code is open-source.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.