Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

EasyInsert: A Data-Efficient and Generalizable Insertion Policy (2505.16187v1)

Published 22 May 2025 in cs.RO and cs.AI

Abstract: Insertion task is highly challenging that requires robots to operate with exceptional precision in cluttered environments. Existing methods often have poor generalization capabilities. They typically function in restricted and structured environments, and frequently fail when the plug and socket are far apart, when the scene is densely cluttered, or when handling novel objects. They also rely on strong assumptions such as access to CAD models or a digital twin in simulation. To address this, we propose EasyInsert, a framework which leverages the human intuition that relative pose (delta pose) between plug and socket is sufficient for successful insertion, and employs efficient and automated real-world data collection with minimal human labor to train a generalizable model for relative pose prediction. During execution, EasyInsert follows a coarse-to-fine execution procedure based on predicted delta pose, and successfully performs various insertion tasks. EasyInsert demonstrates strong zero-shot generalization capability for unseen objects in cluttered environments, handling cases with significant initial pose deviations while maintaining high sample efficiency and requiring little human effort. In real-world experiments, with just 5 hours of training data, EasyInsert achieves over 90% success in zero-shot insertion for 13 out of 15 unseen novel objects, including challenging objects like Type-C cables, HDMI cables, and Ethernet cables. Furthermore, with only one human demonstration and 4 minutes of automatically collected data for fine-tuning, it reaches over 90% success rate for all 15 objects.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: