Papers
Topics
Authors
Recent
2000 character limit reached

Breaking Complexity Barriers: High-Resolution Image Restoration with Rank Enhanced Linear Attention (2505.16157v1)

Published 22 May 2025 in cs.CV

Abstract: Transformer-based models have made remarkable progress in image restoration (IR) tasks. However, the quadratic complexity of self-attention in Transformer hinders its applicability to high-resolution images. Existing methods mitigate this issue with sparse or window-based attention, yet inherently limit global context modeling. Linear attention, a variant of softmax attention, demonstrates promise in global context modeling while maintaining linear complexity, offering a potential solution to the above challenge. Despite its efficiency benefits, vanilla linear attention suffers from a significant performance drop in IR, largely due to the low-rank nature of its attention map. To counter this, we propose Rank Enhanced Linear Attention (RELA), a simple yet effective method that enriches feature representations by integrating a lightweight depthwise convolution. Building upon RELA, we propose an efficient and effective image restoration Transformer, named LAformer. LAformer achieves effective global perception by integrating linear attention and channel attention, while also enhancing local fitting capabilities through a convolutional gated feed-forward network. Notably, LAformer eliminates hardware-inefficient operations such as softmax and window shifting, enabling efficient processing of high-resolution images. Extensive experiments across 7 IR tasks and 21 benchmarks demonstrate that LAformer outperforms SOTA methods and offers significant computational advantages.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.