Papers
Topics
Authors
Recent
2000 character limit reached

Multilinear subspace learning for person re-identification based fusion of high order tensor features (2505.15825v1)

Published 9 May 2025 in cs.CV, cs.AI, and eess.IV

Abstract: Video surveillance image analysis and processing is a challenging field in computer vision, with one of its most difficult tasks being Person Re-Identification (PRe-ID). PRe-ID aims to identify and track target individuals who have already been detected in a network of cameras, using a robust description of their pedestrian images. The success of recent research in person PRe-ID is largely due to effective feature extraction and representation, as well as the powerful learning of these features to reliably discriminate between pedestrian images. To this end, two powerful features, Convolutional Neural Networks (CNN) and Local Maximal Occurrence (LOMO), are modeled on multidimensional data using the proposed method, High-Dimensional Feature Fusion (HDFF). Specifically, a new tensor fusion scheme is introduced to leverage and combine these two types of features in a single tensor, even though their dimensions are not identical. To enhance the system's accuracy, we employ Tensor Cross-View Quadratic Analysis (TXQDA) for multilinear subspace learning, followed by cosine similarity for matching. TXQDA efficiently facilitates learning while reducing the high dimensionality inherent in high-order tensor data. The effectiveness of our approach is verified through experiments on three widely-used PRe-ID datasets: VIPeR, GRID, and PRID450S. Extensive experiments demonstrate that our approach outperforms recent state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.