Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Representational Alignment between Humans and Language Models is implicitly driven by a Concreteness Effect (2505.15682v1)

Published 21 May 2025 in cs.CL

Abstract: The nouns of our language refer to either concrete entities (like a table) or abstract concepts (like justice or love), and cognitive psychology has established that concreteness influences how words are processed. Accordingly, understanding how concreteness is represented in our mind and brain is a central question in psychology, neuroscience, and computational linguistics. While the advent of powerful LLMs has allowed for quantitative inquiries into the nature of semantic representations, it remains largely underexplored how they represent concreteness. Here, we used behavioral judgments to estimate semantic distances implicitly used by humans, for a set of carefully selected abstract and concrete nouns. Using Representational Similarity Analysis, we find that the implicit representational space of participants and the semantic representations of LLMs are significantly aligned. We also find that both representational spaces are implicitly aligned to an explicit representation of concreteness, which was obtained from our participants using an additional concreteness rating task. Importantly, using ablation experiments, we demonstrate that the human-to-model alignment is substantially driven by concreteness, but not by other important word characteristics established in psycholinguistics. These results indicate that humans and LLMs converge on the concreteness dimension, but not on other dimensions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.