Reranking with Compressed Document Representation (2505.15394v1)
Abstract: Reranking, the process of refining the output of a first-stage retriever, is often considered computationally expensive, especially with LLMs. Borrowing from recent advances in document compression for RAG, we reduce the input size by compressing documents into fixed-size embedding representations. We then teach a reranker to use compressed inputs by distillation. Although based on a billion-size model, our trained reranker using this compressed input can challenge smaller rerankers in terms of both effectiveness and efficiency, especially for long documents. Given that text compressors are still in their early development stages, we view this approach as promising.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.