Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

InTreeger: An End-to-End Framework for Integer-Only Decision Tree Inference (2505.15391v1)

Published 21 May 2025 in cs.LG

Abstract: Integer quantization has emerged as a critical technique to facilitate deployment on resource-constrained devices. Although they do reduce the complexity of the learning models, their inference performance is often prone to quantization-induced errors. To this end, we introduce InTreeger: an end-to-end framework that takes a training dataset as input, and outputs an architecture-agnostic integer-only C implementation of tree-based machine learning model, without loss of precision. This framework enables anyone, even those without prior experience in machine learning, to generate a highly optimized integer-only classification model that can run on any hardware simply by providing an input dataset and target variable. We evaluated our generated implementations across three different architectures (ARM, x86, and RISC-V), resulting in significant improvements in inference latency. In addition, we show the energy efficiency compared to typical decision tree implementations that rely on floating-point arithmetic. The results underscore the advantages of integer-only inference, making it particularly suitable for energy- and area-constrained devices such as embedded systems and edge computing platforms, while also enabling the execution of decision trees on existing ultra-low power devices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube