Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An adaptive proximal safeguarded augmented Lagrangian method for nonsmooth DC problems with convex constraints (2505.15369v1)

Published 21 May 2025 in math.OC

Abstract: A proximal safeguarded augmented Lagrangian method for minimizing the difference of convex (DC) functions over a nonempty, closed and convex set with additional linear equality as well as convex inequality constraints is presented. Thereby, all functions involved may be nonsmooth. Iterates (of the primal variable) are obtained by solving convex optimization problems as the concave part of the objective function gets approximated by an affine linearization. Under the assumption of a modified Slater constraint qualification, both convergence of the primal and dual variables to a generalized Karush-Kuhn-Tucker (KKT) point is proven, at least on a subsequence. Numerical experiments and comparison with existing solution methods are presented using some classes of constrained and nonsmooth DC problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: