Papers
Topics
Authors
Recent
2000 character limit reached

Emotional Supporters often Use Multiple Strategies in a Single Turn

Published 21 May 2025 in cs.CL | (2505.15316v1)

Abstract: Emotional Support Conversations (ESC) are crucial for providing empathy, validation, and actionable guidance to individuals in distress. However, existing definitions of the ESC task oversimplify the structure of supportive responses, typically modelling them as single strategy-utterance pairs. Through a detailed corpus analysis of the ESConv dataset, we identify a common yet previously overlooked phenomenon: emotional supporters often employ multiple strategies consecutively within a single turn. We formally redefine the ESC task to account for this, proposing a revised formulation that requires generating the full sequence of strategy-utterance pairs given a dialogue history. To facilitate this refined task, we introduce several modelling approaches, including supervised deep learning models and LLMs. Our experiments show that, under this redefined task, state-of-the-art LLMs outperform both supervised models and human supporters. Notably, contrary to some earlier findings, we observe that LLMs frequently ask questions and provide suggestions, demonstrating more holistic support capabilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.