Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Pruning of Deep Neural Networks for Resource-Aware Embedded Intrusion Detection on the Edge (2505.14592v1)

Published 20 May 2025 in cs.LG and cs.CR

Abstract: Artificial neural network pruning is a method in which artificial neural network sizes can be reduced while attempting to preserve the predicting capabilities of the network. This is done to make the model smaller or faster during inference time. In this work we analyze the ability of a selection of artificial neural network pruning methods to generalize to a new cybersecurity dataset utilizing a simpler network type than was designed for. We analyze each method using a variety of pruning degrees to best understand how each algorithm responds to the new environment. This has allowed us to determine the most well fit pruning method of those we searched for the task. Unexpectedly, we have found that many of them do not generalize to the problem well, leaving only a few algorithms working to an acceptable degree.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.