Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Instance Segmentation for Point Sets (2505.14583v1)

Published 20 May 2025 in cs.CV and cs.LG

Abstract: Recently proposed neural network architectures like PointNet [QSMG16] and PointNet++ [QYSG17] have made it possible to apply Deep Learning to 3D point sets. The feature representations of shapes learned by these two networks enabled training classifiers for Semantic Segmentation, and more recently for Instance Segmentation via the Similarity Group Proposal Network (SGPN) [WYHN17]. One area of improvement which has been highlighted by SGPN's authors, pertains to use of memory intensive similarity matrices which occupy memory quadratic in the number of points. In this report, we attempt to tackle this issue through use of two sampling based methods, which compute Instance Segmentation on a sub-sampled Point Set, and then extrapolate labels to the complete set using the nearest neigbhour approach. While both approaches perform equally well on large sub-samples, the random-based strategy gives the most improvements in terms of speed and memory usage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.