Papers
Topics
Authors
Recent
2000 character limit reached

MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance

Published 20 May 2025 in cs.CL | (2505.14483v1)

Abstract: LLMs have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 50 likes about this paper.