Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Compositional amortized inference for large-scale hierarchical Bayesian models (2505.14429v1)

Published 20 May 2025 in q-bio.QM

Abstract: Amortized Bayesian inference (ABI) has emerged as a powerful simulation-based approach for estimating complex mechanistic models, offering fast posterior sampling via generative neural networks. However, extending ABI to hierarchical models, a cornerstone of modern Bayesian analysis, remains a major challenge due to the difficulty of scaling to large numbers of parameters. In this work, we build on compositional score matching (CSM), a divide-and-conquer strategy for Bayesian updating using diffusion models. To address existing stability issues of CSM, we propose adaptive solvers coupled with a novel, error-damping compositional estimator. Our proposed method remains stable even with hundreds of thousands of data points and parameters. We validate our approach on a controlled toy example, a high-dimensional spatial autoregressive model, and a real-world advanced microscopy biological application task involving over 750,000 parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: