The Post Double LASSO for Efficiency Analysis (2505.14282v1)
Abstract: Big data and machine learning methods have become commonplace across economic milieus. One area that has not seen as much attention to these important topics yet is efficiency analysis. We show how the availability of big (wide) data can actually make detection of inefficiency more challenging. We then show how machine learning methods can be leveraged to adequately estimate the primitives of the frontier itself as well as inefficiency using the `post double LASSO' by deriving Neyman orthogonal moment conditions for this problem. Finally, an application is presented to illustrate key differences of the post-double LASSO compared to other approaches.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.