Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RT-APNN for Solving Gray Radiative Transfer Equations (2505.14144v1)

Published 20 May 2025 in physics.comp-ph

Abstract: The Gray Radiative Transfer Equations (GRTEs) are high-dimensional, multiscale problems that pose significant computational challenges for traditional numerical methods. Current deep learning approaches, including Physics-Informed Neural Networks (PINNs) and Asymptotically Preserving Neural Networks (APNNs), are largely restricted to low-dimensional or linear GRTEs. To address these challenges, we propose the Radiative Transfer Asymptotically Preserving Neural Network (RT-APNN), an innovative framework extending APNNs. RT-APNN integrates multiple neural networks into a cohesive architecture, reducing training time while ensuring high solution accuracy. Advanced techniques such as pre-training and Markov Chain Monte Carlo (MCMC) adaptive sampling are employed to tackle the complexities of long-term simulations and intricate boundary conditions. RT-APNN is the first deep learning method to successfully simulate the Marshak wave problem. Numerical experiments demonstrate its superiority over existing methods, including APNNs and MD-APNNs, in both accuracy and computational efficiency. Furthermore, RT-APNN excels at solving high-dimensional, nonlinear problems, underscoring its potential for diverse applications in science and engineering.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: