New Evidence of the Two-Phase Learning Dynamics of Neural Networks (2505.13900v1)
Abstract: Understanding how deep neural networks learn remains a fundamental challenge in modern machine learning. A growing body of evidence suggests that training dynamics undergo a distinct phase transition, yet our understanding of this transition is still incomplete. In this paper, we introduce an interval-wise perspective that compares network states across a time window, revealing two new phenomena that illuminate the two-phase nature of deep learning. i) \textbf{The Chaos Effect.} By injecting an imperceptibly small parameter perturbation at various stages, we show that the response of the network to the perturbation exhibits a transition from chaotic to stable, suggesting there is an early critical period where the network is highly sensitive to initial conditions; ii) \textbf{The Cone Effect.} Tracking the evolution of the empirical Neural Tangent Kernel (eNTK), we find that after this transition point the model's functional trajectory is confined to a narrow cone-shaped subset: while the kernel continues to change, it gets trapped into a tight angular region. Together, these effects provide a structural, dynamical view of how deep networks transition from sensitive exploration to stable refinement during training.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.