Papers
Topics
Authors
Recent
2000 character limit reached

Rethink the Role of Deep Learning towards Large-scale Quantum Systems (2505.13852v1)

Published 20 May 2025 in cs.LG and quant-ph

Abstract: Characterizing the ground state properties of quantum systems is fundamental to capturing their behavior but computationally challenging. Recent advances in AI have introduced novel approaches, with diverse ML and deep learning (DL) models proposed for this purpose. However, the necessity and specific role of DL models in these tasks remain unclear, as prior studies often employ varied or impractical quantum resources to construct datasets, resulting in unfair comparisons. To address this, we systematically benchmark DL models against traditional ML approaches across three families of Hamiltonian, scaling up to 127 qubits in three crucial ground-state learning tasks while enforcing equivalent quantum resource usage. Our results reveal that ML models often achieve performance comparable to or even exceeding that of DL approaches across all tasks. Furthermore, a randomization test demonstrates that measurement input features have minimal impact on DL models' prediction performance. These findings challenge the necessity of current DL models in many quantum system learning scenarios and provide valuable insights into their effective utilization.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.