Chaos Engineering in the Wild: Findings from GitHub (2505.13654v1)
Abstract: Chaos engineering aims to improve the resilience of software systems by intentionally injecting faults to identify and address system weaknesses that cause outages in production environments. Although many tools for chaos engineering exist, their practical adoption is not yet explored. This study examines 971 GitHub repositories that incorporate 10 popular chaos engineering tools to identify patterns and trends in their use. The analysis reveals that Toxiproxy and Chaos Mesh are the most frequently used, showing consistent growth since 2016 and reflecting increasing adoption in cloud-native development. The release of new chaos engineering tools peaked in 2018, followed by a shift toward refinement and integration, with Chaos Mesh and LitmusChaos leading in ongoing development activity. Software development is the most frequent application (58.0%), followed by unclassified purposes (16.2%), teaching (10.3%), learning (9.9%), and research (5.7%). Development-focused repositories tend to have higher activity, particularly for Toxiproxy and Chaos Mesh, highlighting their industrial relevance. Fault injection scenarios mainly address network disruptions (40.9%) and instance termination (32.7%), while application-level faults remain underrepresented (3.0%), highlighting for future exploration.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.