Noise Injection Systemically Degrades Large Language Model Safety Guardrails
Abstract: Safety guardrails in LLMs are a critical component in preventing harmful outputs. Yet, their resilience under perturbation remains poorly understood. In this paper, we investigate the robustness of safety fine-tuning in LLMs by systematically injecting Gaussian noise into model activations. We show across multiple open-weight models that (1) Gaussian noise raises harmful-output rates (p < 0.001) by up to 27%, (2) that deeper safety fine-tuning affords no extra protection, and (3) that chain-of-thought reasoning remains largely intact. The findings reveal critical vulnerabilities in current safety alignment techniques and highlight the potential of reasoning-based and reinforcement learning approaches as promising direction for developing more robust AI safety systems. These results have important implications for real-world deployment of LLMs in safety-critical applications as these results imply that widely-deployed safety tuning methods can fail even without adversarial prompts.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.