Papers
Topics
Authors
Recent
2000 character limit reached

Noise Injection Systemically Degrades Large Language Model Safety Guardrails

Published 16 May 2025 in cs.CL, cs.AI, and cs.LG | (2505.13500v1)

Abstract: Safety guardrails in LLMs are a critical component in preventing harmful outputs. Yet, their resilience under perturbation remains poorly understood. In this paper, we investigate the robustness of safety fine-tuning in LLMs by systematically injecting Gaussian noise into model activations. We show across multiple open-weight models that (1) Gaussian noise raises harmful-output rates (p < 0.001) by up to 27%, (2) that deeper safety fine-tuning affords no extra protection, and (3) that chain-of-thought reasoning remains largely intact. The findings reveal critical vulnerabilities in current safety alignment techniques and highlight the potential of reasoning-based and reinforcement learning approaches as promising direction for developing more robust AI safety systems. These results have important implications for real-world deployment of LLMs in safety-critical applications as these results imply that widely-deployed safety tuning methods can fail even without adversarial prompts.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.