Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AutoMathKG: The automated mathematical knowledge graph based on LLM and vector database (2505.13406v1)

Published 19 May 2025 in cs.AI

Abstract: A mathematical knowledge graph (KG) presents knowledge within the field of mathematics in a structured manner. Constructing a math KG using natural language is an essential but challenging task. There are two major limitations of existing works: first, they are constrained by corpus completeness, often discarding or manually supplementing incomplete knowledge; second, they typically fail to fully automate the integration of diverse knowledge sources. This paper proposes AutoMathKG, a high-quality, wide-coverage, and multi-dimensional math KG capable of automatic updates. AutoMathKG regards mathematics as a vast directed graph composed of Definition, Theorem, and Problem entities, with their reference relationships as edges. It integrates knowledge from ProofWiki, textbooks, arXiv papers, and TheoremQA, enhancing entities and relationships with LLMs via in-context learning for data augmentation. To search for similar entities, MathVD, a vector database, is built through two designed embedding strategies using SBERT. To automatically update, two mechanisms are proposed. For knowledge completion mechanism, Math LLM is developed to interact with AutoMathKG, providing missing proofs or solutions. For knowledge fusion mechanism, MathVD is used to retrieve similar entities, and LLM is used to determine whether to merge with a candidate or add as a new entity. A wide range of experiments demonstrate the advanced performance and broad applicability of the AutoMathKG system, including superior reachability query results in MathVD compared to five baselines and robust mathematical reasoning capability in Math LLM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.