Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Functional: Learning Function to Scalar Maps for Neural PDE Surrogates (2505.13275v1)

Published 19 May 2025 in cs.LG

Abstract: Many architectures for neural PDE surrogates have been proposed in recent years, largely based on neural networks or operator learning. In this work, we derive and propose a new architecture, the Neural Functional, which learns function to scalar mappings. Its implementation leverages insights from operator learning and neural fields, and we show the ability of neural functionals to implicitly learn functional derivatives. For the first time, this allows for an extension of Hamiltonian mechanics to neural PDE surrogates by learning the Hamiltonian functional and optimizing its functional derivatives. We demonstrate that the Hamiltonian Neural Functional can be an effective surrogate model through improved stability and conserving energy-like quantities on 1D and 2D PDEs. Beyond PDEs, functionals are prevalent in physics; functional approximation and learning with its gradients may find other uses, such as in molecular dynamics or design optimization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.